
56 The Delphi Magazine Issue 51

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

File I/O Error

QI am writing an application
that opens a text file and dis-

plays it in a memo component.
When I run this project from Delphi
3, the file opening statement
causes an error code 32. I don’t
want to write to the file, I just want
to open and read it. What’s hap-
pening here, and how might I be
able to get around this problem?

AAny 32-bit Delphi routines
that open files ultimately re-

sult in calls to Windows API rou-
tines. If you get an error, this will
probably be a Win32 error code
(see later for how to decide
whether it is or not). More than
likely, the error will be reported as
an EInOutError exception, whose
ErrorCode field contains the error
number in question. A handful of
error codes generate meaningful
strings, but most use the generic
message as shown in Figure 1.

To examine individual I/O
related errors, your file manipula-
tion code can be enclosed within a
try..except..end statement. You
can then use a case statement for
the ErrorCode field. Alternatively, if
you use compiler directives to turn
I/O checking off, you can use a case
statement around a call to the
IOResult function. Of course it is
usual to desire constant symbols
rather than literal values such as
32, so where do we find them?

The answer is in the Windows unit,
or at least that is where we find

most of them. If you search
through the unit you will find many
error constants that all start with
an ERROR_ prefix. Listing 1 shows a
small section of this error list,
including the constant
ERROR_SHARING_VIOLATION, which
has a value of $20, or 32. This sug-
gests that some other application
(or indeed other code in the same
application) has the file open in a
manner that excludes you opening
the file for reading.

You can also find these codes
listed in the Win32 help file that
comes with Delphi. In the Win32
Programmer’s Reference help file
that ships with Delphi 5 (and I
would imagine also in earlier ver-
sions) look up the string error
codes and, if you get a list of topics
to choose from, choose Error Codes
(Win32 Programmer’s Reference).

The comments in Listing 1,
which are also used as descrip-
tions in the help file’s alphabetical
list of error codes, represent the
textual descriptions of the prob-
lems. A call to SysErrorMessage
from the SysUtils unit will trans-
late a Win32 error code into its cor-
responding textual description.

As well as Win32 error codes,
Delphi reserves certain ranges of
error codes for itself. Error codes
100 to 149 are Delphi I/O error
codes. Delphi 3 (and later) lists
them if you look up the string I/O
Errors in the help. Error codes 200
to 255 are Delphi fatal error codes
as found in the help under Fatal
Errors (for example, runtime error
216 is an Access Violation). The
EInOutError exception has specific

descriptive messages that are
used for certain error codes, as
shown in Table 1.

Now that we have more informa-
tion about these I/O errors we can
get back to the business of finding
more information about them
when they arise. Going back to the
idea of wrapping I/O code in an
exception handling statement,
Listing 2 shows a piece of code that
opens a text file (or tries to) and
then closes it. Listing 3 shows how
extra code can be added to make
the EInOutError exception’s mes-
sage more informative (the code
comes from the blindingly simple
IOError.Dpr project). Figure 2
shows the new exception dialog
that comes up (assuming the modi-
fied EInOutError exception is not
handled), giving more information
than that shown in Figure 1.

Having identified the error code,
whether it is a Windows code or a
Delphi code, and what it means,
you are now better placed to write
code that handles a particular
error, if you so wish.

If the problem is being caused by
another process having the file
open in a manner that excludes
you from opening it read-only,
then you have little choice but to

{ The system cannot read from the specified device. }
ERROR_READ_FAULT = 30;
{ A device attached to the system is not functioning. }
ERROR_GEN_FAILURE = 31;
{ The process cannot access the file because it’s being used by another process. }
ERROR_SHARING_VIOLATION = $20;
{ The process cannot access the file because
another process has locked a portion of the file. }

ERROR_LOCK_VIOLATION = 33;

➤ Listing 2

procedure TForm1.Button1Click(
Sender: TObject);

var TF: TextFile;
begin
AssignFile(TF, 'c:\SomeFile.Txt');
Reset(TF);
try
//Blah blah

finally
CloseFile(TF)

end //try..finally
end;

➤ Figure 1:
Default
EInOutError
exception
dialog.

➤ Listing 1



58 The Delphi Magazine Issue 51

I/O Error Code Win32 Constant Win32 Description EInOutError Message

2 ERROR_FILE_NOT_FOUND The system cannot find the file specified File not found

3 ERROR_PATH_NOT_FOUND The system cannot find the path specified Invalid filename

4 ERROR_TOO_MANY_OPEN_FILES The system cannot open the file Too many open files

5 ERROR_ACCESS_DENIED Access is denied File access denied

100 N/A N/A Read beyond end of file

101 N/A N/A Disk full

106 N/A N/A Invalid numeric input

➤ Table 1

procedure BetterIOError(E: EInOutError);
var EIO: EInOutError;
begin
if Assigned(E) then begin
EIO := EInOutError.Create(E.Message);
EIO.ErrorCode := E.ErrorCode;
case E.ErrorCode of
1, 6..99: EIO.Message := Format('Win32 API error %d: '#13#13'%s',
[E.ErrorCode,SysErrorMessage(E.ErrorCode)]);

2..5, 100, 101, 106: { As descriptive as can be right now };
102: EIO.Message := 'File variable not assigned a name with AssignFile';
103: EIO.Message := 'File not open';
104: EIO.Message := 'File not open for input';
105: EIO.Message := 'File not open for output';
107..149: EIO.Message := Format('Delphi I/O error %d', [E.ErrorCode]);

end; //case
raise EIO at ErrorAddr

end
end;
procedure TForm1.Button1Click(Sender: TObject);
var TF: TextFile;
begin
AssignFile(TF, 'c:\SomeFile.Txt');
try
Reset(TF);
try
//Blah blah

finally
CloseFile(TF)

end //try..finally
except
on E: EInOutError do
BetterIOError(E)

end //try..except
end;

wait until the file is closed by that
process. However, if your own pro-
gram has the file open elsewhere,
then you can probably do some-
thing about the problem, by
closing the file temporarily or
opening it with appropriate
sharing flags.

Sharing flags can be assigned to
the FileMode global variable for
non-text file variables. They can
also be passed to the FileOpen func-
tion if you are using file handles,
and to a file stream object’s con-
structor. For example, assuming
typed or untyped file variables are
being used, this sets the FileMode
variable to specify read-only
access, and not to exclude anyone
else having read-only access:

FileMode := fmOpenRead or
fmShareDenyWrite;

Similarly, for a file stream object,
this opens it in a similar mode:

var
FS: TFileStream;

...
FS := TFileStream.Create(
‘TheFile’, fmOpenRead or
fmShareDenyWrite)

Type Library Corner Cutting

QI need to write a driver for an
application, and to do this I

need to implement a pre-defined
COM interface in a COM object. As
well as being documented on
paper, the interface is also defined
in a type library. Since the Delphi
type library editor has a tendency
to type in interface methods in the
implementing class while you
define a new COM interface, I won-
dered if it can do the same with an
existing interface. This would save
me entering a lot of methods in the
type library editor by hand.

AThe type library editor,
while a little rough in places

(such as where you enter parame-
ters), is a very flexible piece of
software. It can indeed be coaxed
into typing in a whole number of
methods from a pre-defined
interface from another type li-
brary. In fact there are two ways of
doing what you want, one of which
was already discussed in a recent
issue of The Delphi Magazine. In
Issue 49, Steve Teixeira briefly ran
though some steps in his COM
Corner column demonstrating how
to successfully turn an IDispatch-
based interface defined in your
type library into an interface based
upon some arbitrary interface
defined in another type library.

The other approach is slightly
different. It involves telling the
type library editor that your COM
object implements the target inter-
face in question, thereby avoiding
the need to have another interface
defined.

Before looking at this in detail,
let’s set the scene. As mentioned,
the questioner has a type library
that defines an interface that
she/he wishes to implement in a
COM object. To try and match this
arrangement, for demonstration
purposes we will focus our atten-
tion on the Microsoft Office 97 type
library and the CommandBar inter-
face. Of course, you are unlikely to

➤ Listing 3

➤ Figure 2: A more descriptive
EInOutError exception dialog.



November 1999 The Delphi Magazine 59

ever want to implement this inter-
face, but it comes from a readily
available type library and will
serve as an example that you can
duplicate if needed.

If Office 97 has been installed on
your machine you will already
have its type library installed on
your machine and registered in the
Windows registry. In the ques-
tioner’s case, the type library may
well not be registered, but it needs
to be. To register a type library
called XXXXXXXX.YYY (where YYY
will typically either be TLB or OLB,
unless it has been compiled into an
EXE or DLL) use the TREGSVR tool
that comes with Delphi:

TRegSvr -t xxxxxxxx.yyy

Now that the type library is defi-
nitely registered, we can proceed.
To start with, you need a new appli-
cation or a new ActiveX Library
from the File | New... dialog. You
can now import the type library
into your project (Project | Import
Type Library...) to get a Pascal
unit containing Pascal versions of
all the interfaces (and other bits
and pieces) defined in the type
library. Office 97’s type library will
make an import unit called
Office_TLB. Delphi 5 already has
the Office type libraries imported,
with compiled versions placed in
the Imports directory and the
source files in OCX\Servers, how-
ever the unit name has been
changed to Office97.

You should take a moment to
look at the definition of your target
interface and identify if it is based
upon IDispatch (or some other
interface that is IDispatch-based,
which poses other issues as we
shall shortly see) or not. If the
interface is directly or indirectly
IDispatch-based, you will need a

new Automation object from the
ActiveX page of the File | New...
dialog. Alternatively, if IDispatch
does not come into it, you should
choose a new COM object (not
available in Delphi 3), but make
sure you specify the need for a type
library.

The COM/Automation object
wizard dialog will ask you for a
class (or coclass) name. Enter
whatever you want here. I will work
on the basis that you entered
Dummy. This causes Delphi to manu-
facture a type library in your pro-
ject, define a coclass called Dummy
and an interface called IDummy,
implemented in a class called
TDummy. Since we will not be needing
the IDummy interface, delete it from
the type library editor. Also,
remove IDummy from the TDummy
class definition, since it will no
longer be implementing that inter-
face. This leaves the TDummy class
looking quite unspectacular, as per
Listing 4.

When examining the interface to
see if it is based upon IDispatch,
you should be careful if it is indi-
rectly IDispatch-based. If your
target interface is based on
another interface which is based
upon IDispatch you will need to
implement that interface as well. In
the case of the CommandBar interface
there are several other interfaces
that need to be implemented.
CommandBar is based upon
_IMsoOleAccDispObj, which is based
upon IAccessible which is then
based upon IDispatch. So we will
need to implement _IMsoOleAcc-
DispObj and IAccessible in addition
to CommandBar.

The next step is to make your
application’s type library refer-
ence the type library that defines
the interface (or interfaces). To do
this, in the type library editor’s

object list
pane (the tree
structure on
the left),

select the type library node (the
top of the hierarchy, which
defaults to the name of the pro-
ject). The uses page on the right
lists all the other referenced type
libraries. Right-click on it and
choose Show All Type Libraries.
This adds in all the other
registered type libraries, allowing
you to check the Microsoft Office 8
type library (or whichever one
defines the target interface).
Figure 3 shows what this looks like.

Now select the Dummy coclass in
the object list pane and go to the
Implements page on the right. This
allows you to dictate which inter-
faces will be implemented by
TDummy. Right-click and choose
Insert Interface and you will get a
list of interfaces defined in this
type library and all referenced
type libraries. Choose the target
interface(s) and click OK to add
it/them to the list of implemented
interfaces. To ensure the COM
object still works correctly make
sure that the Default column says
Trueonly for the top-level interface
(by right-clicking and choosing
Default if necessary). Figure 4
shows the outcome in this
example’s case.

Now the Refresh button will do
the hard work for you. Once
pressed, the TDummy class will have
declarations and stub implementa-
tions of all the methods in the
interface(s). The only thing left to
do now is to add the other type
library’s import unit into your
COM class unit’s uses clause. In
this example’s case, this means
adding Office_TLB or Office97 to
the uses clause. The code in Listing
4 should now look like Listing 5.

Customised Docking

QI am writing a Delphi 4 pro-
gram that incorporates a

form which floats above the main
form. If the user wants to dock this
form, they can press a button and

TDummy = class(TAutoObject)
protected
{ Protected declarations }

end;

➤ Listing 4

➤ Figure 3:
Your type
library can
use other
type
libraries.



60 The Delphi Magazine Issue 51

the form docks itself into a panel
on the form below, thanks to a call
to the floating form’s ManualDock
method. However, I cannot find a
way to turn off the double line and
miniature X button that appear
when the form is docked (the same
as those seen above the Code Ex-
plorer when it is docked in the
code editor). I don’t need them, as
the form is always docked and
undocked via a separate button. Is
there any way of removing them?

I have tried turning off the dock-
ing manager for the panel (by set-
ting its UseDockManager property to
False) but when I call ManualDock
the form simply vanishes and
doesn’t appear docked at all.

AThis question gives us a
chance to look a little into

the docking support added into
Delphi 4, of which I have seen little
in print. Before getting into those
two lines (called grabber lines) and
the cross (the close button), it’s
worth seeing why the UseDock-
Manager property didn’t work as
expected.

When a docking operation takes
place, there needs to be some con-
trol over where and how the
docked item will be drawn in the
dock site. Delphi uses a dock man-
ager object to give default control
over all the docking operations.
Setting UseDockManager to False
means that you have to supply
your own dock manager, or take
full control of docking yourself.

The dock manager of any win-
dowed control can be any object
that implements the IDockManager
interface, defined in the Controls

➤ Figure 4:
A Delphi
COM
object can
implement
predefined
interfaces.

TDummy = class(TAutoObject, _IMsoOleAccDispObj, CommandBar, IAccessible)
protected
function accHitTest(xLeft, yTop: Integer): OleVariant; safecall;
function accNavigate(navDir: Integer; varStart: OleVariant): OleVariant;
safecall;

function FindControl(Type_, Id, Tag, Visible,
Recursive: OleVariant): CommandBarControl; safecall;

function Get_accChild(varChild: OleVariant): IDispatch; safecall;
...
// Many methods removed to keep this listing short
...
procedure Set_NameLocal(const pbstrNameLocal: WideString); safecall;
procedure Set_Position(ppos: MsoBarPosition); safecall;
procedure Set_Protection(pprot: MsoBarProtection); safecall;
procedure Set_RowIndex(piRow: SYSINT); safecall;
procedure Set_Top(pypTop: SYSINT); safecall;
procedure Set_Visible(pvarfVisible: WordBool); safecall;
procedure Set_Width(pdx: SYSINT); safecall;
procedure ShowPopup(x, y: OleVariant); safecall;
{ Protected declarations }

end;

➤ Listing 5

unit. Delphi’s
default dock
manager is
the TDockTree class. Each dock site
needs its own dock manager, and
has a DockManagerproperty (of type
IDockManager) that refers to it.
Assuming the dock site control has
its DockSite and UseDockManager
properties set to True, a default
dock manager is created as needed
and assigned to the DockManager
property.

As mentioned, the dock manager
(TDockTree by default) takes
responsibility for both placing a
docked control in a dock site and
also for how it gets drawn.
TDockTree has a pair of methods
that cause the two grabber lines
and the small close button to be
drawn, allowing the user to undock
the control. AdjustDockRect is used
to shrink the docked control’s rect-
angle to make room for the grab-
bers and close button, whilst
PaintDockFrame draws them in. If
the docking/undocking is all
program-controlled, then we need
to find some way of disabling these
methods.

There appear to be two ways of
achieving the questioner’s goal.
One way is to create a custom dock
manager just for the panel that the
second form gets docked into. This
would leave all other dock sites
operating as they normally do. The

alternative is to replace the default
dock manager used by all
TWinControl-based components
with one that stops the grabbers
and button being drawn.

Fortunately, since the two meth-
ods discussed above are both
pleasingly defined as virtual
(which may surprise some of the
more cynical Delphi developers
among you), the first way is made
rather easier. You define a new
dock manager class inheriting
from TDockTree with overridden
versions of these two methods
that do nothing, causing docked
controls not to be shrunk, and not
to get the grabber/button adorn-
ments. An instance of this class is
then given to the panel’s Dock-
Manager property and we can see
the results in two screenshots.
Figure 5 shows a small red form
docked into a panel in the default
way with no changes. Figure 6
shows the same form docked, but
using the new dock manager.

The second solution, where the
default dock manager is com-
pletely replaced with a new dock
manager, works in much the same
way as with customised tooltip
windows (see Hints With Attitude in
Issue 16). The Controlsunit defines
a class reference type called
TDockTreeClass, defined to repre-
sent the TDockTree class, or any
class inherited from it. It also
declares a class reference variable
called DefaultDockTreeClass of
type TDockTreeClass which is
initialised to TDockTree. To
completely change the default
dock manager, you can assign a
class inherited from TDockTree to
this class reference variable in
some unit’s initialisation section.

When a component creates a
default dock manager, it uses the



62 The Delphi Magazine Issue 51

class reference variable to do so. If
your replacement class has been
assigned, this means that an
instance of your dock manager
class will be created.

In much the same way, to get a
more functional tooltip window,
you assign a class inherited from
THintWindow to the Forms unit
HintWindowClass class reference
variable which is initialised to
THintWindow.

Listing 6 shows some code that
covers both solutions (from the
DockEg project on the cover
disk) thanks to some conditional
compilation directives. Depen-
ding on whether the conditional
symbol CompletelyReplaceDef-
aultDockManager is defined, either
the panel’s dock manager, or the
global default dock manager, is
replaced with a customised ver-
sion. To define the conditional
symbol, either use Project |
Options... (or Ctrl+Shift+F11 in

Delphi 4 and later), go to the Direc-
tories/ Conditionals page and
type it into the Conditional
defines: area, or alternatively enter
this towards the top of the unit:

{$define

CompletelyReplaceDefaultDockManager}

CreateProcess Alert
Thanks to a keen-eyed reader who
contacted me recently, I have
learnt that all calls to the Win32 API
CreateProcess that I have ever

made have been somewhat lack-
ing. This includes calls made to it
in a number of Delphi Clinic entries
over the years. The problem is a
resource leak (at least whilst the
program that calls CreateProcess is
running). Since this is the first time
anyone has raised this issue with
me, I feel that others may also be
falling foul of the same faux pas and
so will spend a little time going
over it.

CreateProcess launches a
program as specified by its
parameters and fills up a
TProcessInformation record that
you pass in. This record ends up
containing the launched pro-
gram’s process ID and primary
thread ID along with a handle to
the thread and a handle to the pro-
cess. It is these handles that are at
issue here.

When a process is launched, the
Windows kernel allocates a
process object for the program
and a thread object for the primary
thread. These objects are
reference counted, like COM
objects, and remain in existence
until the reference count goes
back down to zero. The launching
of the process increments the pro-
cess object reference count to 1.
The creation of the process’s pri-
mary thread similarly causes the
thread object’s reference count to
be incremented to 1. Part of the job
given to CreateProcess is to open a
handle to the process and open
another handle to the primary
thread. This causes the count of
each kernel object to go up to 2.

When the launched process (the
launchee) terminates, both
reference counts are decremented
to 1. So the program has gone
away, but the program that called
CreateProcess (the launcher) still
has open handles to it. These
kernel objects remain in existence
until the handles are closed. If the
launcher is terminated, the
handles will be closed (one of the
nice things about 32-bit Windows
is that when a process closes
down, Windows closes all its open
handles and frees up any memory
associated with it).

The point being made here is
that if the launcher has no need to

➤ Left, top: Figure 5
A docked form with visible
grabbers and close button.

➤ Left, bottom: Figure 6
A docked form with no
adornments.

type
TMyDockTree = class(TDockTree)
protected
procedure AdjustDockRect(Control: TControl; var ARect: TRect); override;
procedure PaintDockFrame(Canvas: TCanvas; Control: TControl;
const ARect: TRect); override;

end;
procedure TMyDockTree.AdjustDockRect(Control: TControl; var ARect: TRect);
begin
//Do nothing to change the control's boundaries as
//there will be no dock grabber lines or close button

end;
procedure TMyDockTree.PaintDockFrame(Canvas: TCanvas; Control: TControl;
const ARect: TRect);

begin
//Do nothing as we do not want dock grabber lines or close button

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
{$ifndef CompletelyReplaceDefaultDockManager}
{ Use this code to change just panel's dock manager. We do not need to free this
object since property is actually an interface reference and will auto-free }

Panel1.DockManager := TMyDockTree.Create(Panel1)
{$endif}
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
if Form2.Floating then
Form2.ManualDock(Panel1)

else
Form2.ManualDock(nil)

end;
initialization
{$ifdef CompletelyReplaceDefaultDockManager}
//Only use this code to change all docking to draw no adornments
DefaultDockTreeClass := TMyDockTree

{$endif}
end.

➤ Listing 6



64 The Delphi Magazine Issue 51

refer to the handles, it should immediately close them,
to avoid keeping the kernel objects alive longer than
necessary. In fact, the Win32 API help file says: ‘The
created process remains in the system until all threads
within the process have terminated and all handles to the
process and any of its threads have been closed through
calls to CloseHandle. The handles for both the process and
the main thread must be closed through calls to
CloseHandle. If these handles are not needed, it is best to
close them immediately after the process is created.’

In his book Advanced Windows, Jeffrey Richter also
makes the point quite emphatically. In a box marked as
Important and with an exclamation mark next to it, he
says: ‘Don’t forget to close these handles. Failure to close
handles is one of the most common mistakes developers
make and results in a system memory leak until the pro-
cess that called CreateProcess terminates.’

So if you simply wish to launch some application,
code like Listing 7 is the resource-friendly way of doing
it. Of course sometimes you do need to refer to the pro-
cess handle or thread handle after launching the pro-
cess. For example, you may need to pass it to
WaitForSingleObject to either wait for the process to
terminate, or find out if it has terminated. If this is the

➤ Listing 7: A resource-friendly command executor.

uses ShellAPI;
...
{ Extended version of RunCommand which can
handle file associations }

procedure RunCommandEx(const Cmd, Params: String);
var SEI: TShellExecuteInfo;
begin
//Fill record with zero byte values
FillChar(SEI, SizeOf(SEI), 0);
SEI.cbSize := SizeOf(SEI);  //Set mandatory record field
//Ask for an open process handle
SEI.fMask := see_Mask_NoCloseProcess;
//Tell API which window error dialogs should be modal to
SEI.Wnd := Application.Handle;
//Set up command line
SEI.lpFile := PChar(Cmd);
if Length(Params) > 0 then
SEI.lpParameters := PChar(Params);

SEI.nShow := sw_ShowNormal;
//Try and launch child process. Exit on failure
if not ShellExecuteEx(@SEI) then Exit;
//Wait until process has started its main message loop
WaitForInputIdle(SEI.hProcess, Infinite);
//Close process handle
CloseHandle(SEI.hProcess);

end;

➤ Listing 8: An alternative command-line executor.

case, then remember to close the handles as soon as
you are done with them.

The other Win32 API that launches programs is
ShellExecuteEx. The TShellExecuteInfo record that acts
as its only argument does not give you a thread handle,
however it does return a process handle. Fortunately,
by default, this handle is always 0 (representing a
closed handle). However, if the fMask field includes the
value see_Mask_NoCloseProcess then the handle will be a
valid, open handle to the process. This means that if
you use that flag, you have the responsibility of closing
the process handle.

A slightly more capable version of Listing 7 can be
seen in Listing 8. By more capable, I mean that in addi-
tion to programs, this new version can also take a file
name and launch the associated program. Both these
routines are in the RunCmd unit on this month’s disk.

Acknowledgements
Thanks are due to Geoff Lawrence for improving my
Windows API knowledge this month.

procedure RunCommand(const Cmd, Params: String);
var
SI: TStartupInfo;
PI: TProcessInformation;
CmdLine: String;

begin
//Fill record with zero byte values
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI);      //Set mandatory record field
//Ensure Windows mouse cursor reflects launch progress
SI.dwFlags := StartF_ForceOnFeedback;
//Set up command line
CmdLine := Cmd;
if Length(Params) > 0 then
CmdLine := CmdLine + #32 + Params;

//Try and launch child process. Raise exception on failure
Win32Check(CreateProcess(nil, PChar(CmdLine),
nil, nil, False, 0, nil, nil, SI, PI));

//Wait until process has started its main message loop
WaitForInputIdle(PI.hProcess, Infinite);
//Close process and thread handles
CloseHandle(PI.hThread);
CloseHandle(PI.hProcess);

end;


	File I/O Error
	Type Library Corner Cutting
	Customised Docking
	CreateProcess Alert
	Acknowledgements

